Seat No:	Enrollment No:
----------	----------------

PARUL UNIVERSITY **FACULTY OF MANAGEMENT** MBA Winter, 2019 - 20 Examination

Semester: 2 Date: 14/12/2019

Subject Code: 06200157 Time: 10:30 am to 01:00pm

Subject Name: Operation Research Total Marks: 60

T							
	ns	re	111	rt1	n	n	C
	11.7		u.				. 7

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

_	_	_				-
11	1	Do	00	I Ni s	•nnt	~~
ι,	. 1	DO	45	IJП	eci	eu.

A). Multiple choice type questions/Fill in the blanks. (Each of 1 mark) (05)1. Graphical method can be applied to solve a LPP when there are only variable a) One c) More than one b) Two d) Three 2 The right hand side constant of a constraint in a primal problem appears in the corresponding a) A Co-efficient in the objective function c) Right hand side of a constraint b) An input out coefficient d) None of the above 3 In a 6 X 6 assignment problem, the number of allocated cells are: a) 6 c)31b) 11 d) 36 4 A game is said to be fair

- - a) Both upper and lower value of game are c) upper value is more than lower value of same and zero
 - the game
 - b) upper and lower value of game are not equal
- d) None of the above
- 5 The utilization factor for a system represents:
 - a) the steady state average time
- c) the probability that the service facility is in
- b) The probability that no one is in the system
- d) the average number of customers in the queue

B). Define the following. (Each of 1 mark)

(05)

- 1. Length of Queue
- 2. Degeneracy in transportation problem
- 2. Payoff Matrix
- 4. Unbounded solution
- 5. Saddle point

C).Direct questions. (Each of 1 mark)

(05)

- 1. Differentiate between Feasible Solution & Optimal Solution
- 2. What is unbalanced Assignment problem
- 3. Differentiate between Maximin and Minimax Principle
- 4. Explain the **Laplace** principles of decision making.
- 5. State the different components of lpp

Q.2 Answer the following questions.

HLL is considering the problem of marketing a new product. There are two factors that are uncertain – annual demand and profit. The management has the past data regarding the possible levels of two factors:

	Annual			
	Demand	Probability	Profit	Probability
	1000	0.1	3.00	0.1
	2000	0.2	5.00	0.2
A).	3000	0.4	7.00	0.4
	4000	0.2	9.00	0.2
	5000	0.1	10.00	0.1

(07)

Using Monte-Carlo simulation, determine the following:

- a. Average Demand
- b. Average Profit

Random Number. for Demand: 35, 55, 10, 30, 70 Random Number for Profit: 15, 80, 50, 90, 30

Find the optimum solution of the following transportation problem:

		I	П	Ш	IV	Supply
	Α	21	16	25	13	11
B).	В	17	18	14	23	13
	С	32	27	18	41	19
	Demand	6	10	12	15	

Q.3 Answer the following questions.

A Xerox machine in an office is operated by a person who does other jobs also. The average service time for a job is 6 minutes per customer. On an average, in every 12 minutes one customer arrives for Xeroxing. Find:

The Xeroxing machine utilization

(07)

- ii. Average time spent by a customer
- iii. Average queue length

In a textile sales emporium, four salesmen A, B, C and D are available to four counters W, X, Y and Z. Each salesman can handle any counter. The service (in hours) of each counter when managed by each salesman is given below:

How the salesmen should be allocated to appropriate counters so that the service time is minimized.

(15)

1. Find the dual of the following Primal:

$$Minimize Z = x1 + x2 + x3$$

Subject to

$$x1 - 3x2 + 4x3 = 5$$

$$x1 - 2 x2 <= 3$$

$$2x2 - x3 > = 4$$

Where x1, $x2 \ge 0$, x3 is unrestricted

- 2. State and explain various assumptions of Linear programming model
- 3. Solve by minimum spanning tree technique and find the total length

4. Solve the given lpp by graphical method:

Max
$$Z = 40x1 + 80 x2$$

Subject to

$$2x1 + 3x2 \le 48$$

$$X2 <= 10$$

$$X1, x2 >= 0$$